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Abstract. We discuss stimulated Raman adiabatic passage (STIRAP) for pulses whose amplitude is mod-
ulated with constant frequency. We discuss in detail the case of a Lambda (Raman) system driven by
two amplitude-modulated pulses. We present a variety of numerical solutions to the relevant Schrödinger
equation, which we interpret using the Floquet theorem for the solution of systems of linear equations
with periodic coefficients, the concept of quasienergies, and the assumption of adiabatic evolution. We find
thresholds for successful population transfer and show that some peculiarities of the depicted efficiency of
population transfer can be interpreted as pairs of Landau-Zener transitions in the areas of avoided crossings
of quasienergies. We provide an analytic expression for the transfer efficiency in these cases. We show that
the efficiency of population transfer is much more sensitive to the population decay from the upper level
than in the case of smooth (non modulated) laser pulses. We note the applicability of the results to cases
beyond the rotating wave approximation.

PACS. 32.80.Wr Other multiphoton processes – 42.50.Ct Quantum description of interaction of light
and matter; related experiments

1 Introduction

Amongst the various techniques which permit the com-
plete transfer of population between two quantum states,
that of stimulated Raman adiabatic passage (STIRAP)
has particular advantages for robustness [1–3]. In essence,
this procedure uses a pump pulse (near resonant with
transition 1-2) and a Stokes pulse (near resonant with
transition 2-3) to achieve complete transfer of population
between states 1 and 3. For this to occur, it is important
that the Stokes pulse interact first (counterintuitive pulse
order), that the pulses satisfy a few simple constraints on
peak value and smoothness, and that the pulse frequencies
together satisfy a two-photon resonance condition.

Although the STIRAP process is surprisingly robust
(e.g. it does not require specific pulse shapes or pulse ar-
eas), there are known experimental effects which diminish
population transfer. Very early in the experimental stud-
ies of the STIRAP process it was found that fluctuations
in pulse amplitude could be detrimental [4]. Indeed, it
is essential that the bandwidths of pulses to be used for
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STIRAP be very close to the Fourier transform limit. It
might be supposed that any rapid variation of pulse enve-
lope would, by increasing the pulse bandwidth, diminish
transfer of population, because conditions for adiabatic
evolution may fail. We here examine some special cases in
which this simple view is incorrect. In doing so, we provide
illustrations of the usefulness of adiabatic Floquet analysis
in describing the STIRAP process.

Incoherent fluctuations are generally detrimental to
any process, STIRAP included, which relies on maintain-
ing coherence. We shall discuss cases of coherent varia-
tion, and we shall show that these are not always detri-
mental. The particular examples we use are of a pulse
which has a sinusoidal modulation imposed on the oth-
erwise slowly varying envelope. When the modulation is
slow, then one expects (and finds) that the excitation dif-
fers little from what would occur without modulation. As
the modulation increases in frequency the field changes be-
come more rapid, and the usual conditions for adiabatic
evolution (i.e. slowly changing interaction) fail. Neverthe-
less, we show that the STIRAP population transfer can
sometimes succeed even then.

We begin by reviewing the STIRAP process, with a
discussion of adiabatic evolution. This latter provides the
usual understanding of how coherent excitation by slowly
varying pulses affects atomic excitation. We then de-
fine modulated pulses and present examples of numerical
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integration of the Schrödinger equation. The results ex-
hibit some features which, at first glance, seem unex-
pected. To explain features of these results we introduce
adiabatic Floquet states, a generalization of the more
traditional Floquet analysis valid for perfectly periodic
Hamiltonians. This approach provides a simple explana-
tion of the features.

The general approach used here has application to ex-
citation in which the usual rotating wave approximation
must be extended to include effects of counter-rotating
terms. The final section presents an example.

2 Basic principles of STIRAP

2.1 RWA Hamiltonian

To establish basic definitions, we here review the STIRAP
procedure. We consider three states, labeled 1, 2, 3, with
energies E1 ≤ E3 < E2 (the so-called Lambda configu-
ration) driven by two interactions, labeled P, S. Acting
on this system is a local electric field which combines a
pump pulse (carrier frequency ωP ) and a Stokes pulse (car-
rier frequency ωS). As is customary, we make the rotat-
ing wave approximation (RWA). Upon defining a pair of
single-step laser detunings of the carrier frequencies from
their assigned Bohr transition frequencies,

~∆P ≡ (E2 −E1)− ~ωP , ~∆S ≡ (E2 −E3)− ~ωS
(1)

a two-photon (Raman) detuning δ and an average detun-
ing ∆̄,

δ ≡ ∆P −∆S , 2∆̄ ≡ ∆P +∆S (2)

we can write the basic RWA Hamiltonian matrix as

H(t) =
~
2

 −δ ΩP (t) 0

ΩP (t) 2∆̄ ΩS(t)

0 ΩS(t) δ

 . (3)

Note that our energy zero-point and our choice of the arbi-
trary phases of basis states [5] shifts all diagonal elements
away from the common choice which sets H11 = 0.

The (time varying) Rabi frequencies ΩP (t) and ΩS(t)
are, in the approach of the RWA, just products of dipole
moments and electric field amplitudes, which can be taken
as real slowly-varying functions of time.

2.2 Adiabatic states

The essence of adiabatic evolution and the elementary
STIRAP process is that complete population transfer, be-
tween state ψ1 and state ψ3, can occur if certain simple
conditions hold: (1) the two-photon resonance condition
δ = 0 holds for the Raman transition; (2) the Stokes pulse
precedes the pump pulse and ceases first; and (3) the time
evolution is adiabatic.

The theoretical analysis of the STIRAP process is most
simply presented by first constructing the (three) instan-
taneous eigenstates Φn(t) of the RWA Hamiltonian H(t)
(the dressed states or adiabatic states)

[H(t)− ~$n(t)]Φn(t) = 0. (4)

When the two-photon detuning vanishes (δ = 0) the eigen-
values are

$0(t) = 0, $±(t) =
1

2

[
∆̄±

√
∆̄2 +Ω(t)2

]
, (5)

where Ω(t) is the rms Rabi frequency,

Ω(t) ≡
√
|ΩS(t)|2 + |ΩP (t)|2. (6)

(We retain these same labels +, 0,− in the more general
case when δ is not zero.) Then we express the statevector
at each instant in terms of these dressed states,

Ψ(t) =
∑
n=0,±

Cn(t) exp

[
−i

∫ t

dt′$n(t′)

]
Φn(t). (7)

At any time t the statevector Ψ(t) is expressible as some
combination of the adiabatic states Φn(t) appropriate to
that time. In special cases (these are of particular interest)
the statevector may be very nearly a single dressed state.

The usual approach to STIRAP is to find (three)
dressed states at each instant. Initially, the system is in
one of these states. Through suitable pulse construction,
one allows the system to evolve adiabatically, meaning
that the Rabi frequencies change only slowly and the sys-
tem remains in this adiabatic state. The constraint on slow
variation of the Rabi frequencies is that during the pulse
action the differences of the eigenvalues always be much
larger than the inverse of the pulse duration τ

|$k(t)−$m(t)| � τ−1, k 6= m. (8)

That is, to ensure adiabatic evolution it is necessary that
the (three) eigenvalues remain well separated. When the
detuning ∆̄ is small, the largest separation of the eigenval-
ues, $max, is half of the maximum value of the rms Rabi
frequency,

$max ≡ max|$k(t)−$m(t)| =
1

2
maxΩ(t). (9)

When the two-photon detuning vanishes (δ = 0) the null-
eigenvalue dressed state has the simple construction

Φ0(t) =
1

Ω(t)

 ΩS(t)

0

−ΩP (t)

 . (10)

Because this state has never any component of the excited
state ψ2, from which spontaneous emission occurs as a
probability loss, it is known as a “trapped state” or “dark
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Fig. 1. Examples of excitation produced by pump-
Stokes Gaussian pulses fG(t). Top frames show pulse
envelopes vs. time, central frames show (atomic state)
populations vs. time, bottom frames show probabili-
ties of adiabatic states vs. time. All pulses are Gaus-
sian, with τD = τ , pulse areas Ωmaxτ = 100 and mod-
ulation phases φP = 0, φS = 0.3π. There is no loss.
(A) Excitation by unmodulated pulses, aP = aS = 0.
(B) Modulation at frequency ωM = 0.5Ωmax, with
aS = aP = 0.5. (C) Modulation at frequency ωM =
0.8Ωmax, with aS = aP = 0.5.

state”. With the use of a counterintuitive pulse sequence
(Stokes before pump) this adiabatic state has the property

ψ1 =
←−
init

Φ0(t)
−→
final

= −ψ3 (11)

Thus by starting in state ψ1 and maintaining adiabatic
conditions, population transfer is complete.

3 Numerical results

The object of principle interest is the population transfer
efficiency of the pulse sequence. By definition, this is the
population in the target state ψ3 at the end of the pulses,
assuming that all population originally resided in state ψ1.
A desirable scenario is when this efficiency is very close to
unity. We regard the transfer to be poor when it is small.

It is not difficult to compute numerical solutions to
the time-dependent Schrödinger equation for a variety of
pulse shapes and modulations (we use the fourth order
Runge-Kutta integration method), and to view the popu-
lation histories which result from such computations. Such
plots often provide useful insight into reasons for success
or failure of population transfer.

3.1 Modulated pulses

We consider pulses Ωj(t) which, in addition to having a

slowly varying envelope Ω
(0)
j (t), are sinusoidally modu-

lated with frequency ωM ,

Ωj(t) = Ω
(0)
j (t)[1 + aj cos(ωM t+ ϕj)], (j = P, S).

(12)

For simplicity we assume that both pulses have the same
peak value Ωmax,

Ω
(0)
S (t) = ΩmaxfS(t), Ω

(0)
P (t) = ΩmaxfP (t), (13)

by introducing envelope functions fj(t) having unit peak
value, max|fj(t)| = 1. For simplicity we take the pump
and Stokes pulses to have the same envelope functions,
with the pump delayed from the Stokes pulse by time τD.

For the numerical examples we use Gaussian pulses,

fP (t) = fG(t− τD/2), fS(t) = fG(t+ τD/2),

fG(t) ≡ exp[−(t/τ)2], (14)

although we will also make use of other pulse shapes in
our discussion. To illustrate an extreme case of adiabatic
eigenvalues we consider the pulses

fP (t) = sin(πt/2τ), fS(t) = cos(πt/2τ) (15)

to be used in the interval 0 < t < τ . To allow simple
analytic expressions we consider linear-ramp pulses

fP (t) =

(
1

2
+
t

τ

)
, fS(t) =

(
1

2
−
t

τ

)
(16)

in the interval −τ/2 < t < +τ/2: the Stokes pulse starts
at a finite value and decreases linearly to zero, while the
pump pulse rises linearly from zero.

3.2 Population histories

Figure 1 shows three examples of numerical solutions of
the Schrödinger equation for three situations, chosen to
illustrate particular points. The conditions for the cases
differ in the chosen modulation frequency.

The first column, Figure 1A, shows a typical ex-
ample of the usual three-state STIRAP (i.e. unmodu-
lated pulses). The top frame shows the two overlapping
pulse envelopes (Gaussians), with the Stokes preceding the
pump. The middle frame shows the (three) time varying
populations. We see that the population in (initial) state
ψ1 drops monotonically to zero during the overlap time,
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while the population in (target) state ψ3 rises monotoni-
cally to unity during this interval. Very little population
enters the intermediate state ψ2.

The lower frame on this figure plots the probability of
finding the system in the several dressed adiabatic states.
(These states, discussed below, are adiabatic Floquet
states, the generalization of the adiabatic states used for
ordinary STIRAP.) We see that these remain constant:
the system begins in the trapped state (0) and remains in
this state.

The middle column, Figure 1B, shows an example of
behavior when the pulses of Figure 1A are modulated at a
frequency approaching the peak Rabi frequency (the mod-
ulation frequency here is ωM = 0.5Ωmax). The top frame
shows the modulated pulses, which exhibit rapid variation
in amplitude. The central frame shows the population in
the three atomic states. As can be seen, for the conditions
chosen here there is poor population transfer to state ψ3,
and the population undergoes rapid irregular changes dur-
ing the pulse overlap. The rapid variations originate with
both the Rabi frequencies and the modulation frequency.

The lower frame plots the probability of remaining in
an adiabatic state. Unlike the previous case, here there
are visible distinct changes. At particular times there oc-
cur abrupt changes in the Floquet state populations, and
at the end there occurs little population in the desired
state Φ0.

It might be thought that the failure to produce efficient
population transfer, as occurs in this second set of figures,
is an inevitable outcome of introducing rapid variation of
the pulse amplitude. That this view is too simplistic can be
seen from the three final frames, Figure 1C. Here the mod-
ulation has been increased somewhat (to ωM = 0.8Ωmax)
and the pulse envelopes appear even more strongly vari-
able – steeper slopes and more rapid variation. However,
we see in the central frame that population transfer is suc-
cessful. Although there is noticeable high-frequency mod-
ulation upon the population histories, it is clear that the
STIRAP process succeeds in this case.

The lower frame plots the probability of remaining in
an adiabatic Floquet state. As with the first frames, the
constancy of these probabilities signifies good population
transfer.

It is not difficult to compute population histories for a
variety of pulse modulations, and to organize these com-
putations into plots of transfer efficiency (the population
in state ψ3 at the end of the pulse sequence) for a vari-
ety of pulse parameters. Viewing such plots one can infer
the conditions (of modulation and amplitude) needed to
produce population transfer. Given pulses which are suffi-
ciently intense that STIRAP would succeed with smooth
pulses (specifically, the pulse area Ωmaxτ must be much
larger than 1), what matters is how large the modulation
frequency ωM is compared with Ωmax.

3.3 Variation of ωM and Ωmax

Figure 2 presents an example of population transfer
efficiency, for fixed peak Rabi frequencies and pulse delay,

Fig. 2. Population transfer (to state 3) vs. ωM/Ωmax. See that
small modulation frequency ωM is good, large ωM is good, and
for intermediate values there are some regularities. Parameters:
Gaussian pulses, τD = τ , pulse area Ωmaxτ = 100, modulation
amplitude aP = aS = 0.5, phases φP = 0, φS = 0.3π, no loss.

Fig. 3. Population transfer vs. Ωmaxτ . See that small Ωmaxτ is
bad (not adiabatic), large Ωmaxτ is good, and for large values
there are regularities. Parameters: Gaussian pulses, τD = τ ,
modulation frequency ωMτ = 20, modulation amplitude aP =
aS = 0.5, phases φP = 0, φS = 0.3π, no loss.

as a function of modulation frequency ωM , for a lossless
system and Gaussian pulses.

It is quite evident that when the modulation frequency
ωM exceeds a critical value, momentarily denoted as ωcrit,
good population transfer occurs. The critical value is seen
to be slightly less than 0.7Ωmax. This general behavior, of
a threshold modulation frequency, happens for any value
of modulation amplitude aS or aP .

For slower modulation, ωM < ωcrit, there will be found
both good and poor population transfer, between zero and
unity. The dependence of transfer efficiency upon modula-
tion frequency shows definite patterns. We will comment
below on the source of these regularities.

In the limit of very slow modulation, ωM � ωcrit,
one recovers the high transfer probability associated with
conventional unmodulated STIRAP.
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Fig. 4. Population transfer vs. ωM/Ωmax in the presence of
loss. See that features are less sharp and threshold is less pro-
nounced. Parameters are similar to Figure 2 but with loss:
Gaussian pulses, τD = τ , pulse area Ωmaxτ = 100, modulation
amplitude aP = aS = 0.5, phases φP = 0, φS = 0.5π, loss
γτ = 10.

These results can be viewed in a complementary man-
ner, holding the modulation frequency ωM fixed while
changing the peak Rabi frequency Ωmax (this amounts to
varying the pulse fluency). Figure 3 shows the efficiency
for varying Ωmaxτ . We see that for very small Rabi fre-
quency, poor transfer occurs. This is because the adiabatic
criterion Ωmaxτ > 1 is not satisfied; the pulse areas are
too small to produce good adiabatic evolution. For some-
what larger Rabi frequencies, but bounded by the limit
0.7Ωmax < ωM , good transfer occurs. (Note: the factor
0.7 occurs because Ωmax is the peak Rabi frequency for
one pulse. The plots depict the case ωMτ = 20, so that
the equality 0.7Ωmax = ωM occurs for 0.7Ωmaxτ = 20.)
When the Rabi frequency exceeds this value there occur
highs and lows of transfer efficiency. For very large Rabi
frequency, Ωmax � ωM , the transfer efficiency is oscilla-
tory but generally poor.

3.4 Effect of population loss

When there is population loss from state ψ2 (as occurs
by spontaneous emission to states other than ψ1 or ψ3)
the transfer state (see Sect. 4.4) is lossy. Nevertheless, for
some frequency conditions we have population trapping
and no loss of probability. One can take the loss into ac-
count by the substitution 2∆̄→ 2∆̄− iγ in equation (4).
When loss is present, the pattern of population transfer
dependence on modulation frequency becomes more regu-
lar in the region of low efficiency. The boundary between
high and low efficiency regimes becomes less clear cut. Os-
cillations occur as ωM varies. Figure 4 illustrates this.

4 Analytic results and explanations

The various regularities of population transfer with am-
plitude modulated pulses can be understood by means of
a simple generalization of conventional STIRAP. Whereas

the usual case deals with a nearly static Hamiltonian, and
uses plots of adiabatic energies to reveal crossings of di-
abatic curves which affect adiabatic evolution, here we
deal with a nearly periodic Hamiltonian. We can use plots
of appropriate eigenvalues, the adiabatic Floquet eigen-
values (or quasienergies) to reveal similar problems with
adiabatic evolution with modulated pulses.

4.1 Floquet states

Prior to examining the problem of interest (modulated
pulses) we first review the limiting case in which the
Hamiltonian is, at all times, perfectly periodic, with period
T = 2π/ωM . In this idealization the Schrödinger equation
becomes a set of coupled linear ordinary differential equa-
tions with periodic coefficients (the matrix elements of the
RWA Hamiltonian H(t))

~
d

dt
Ψ(t) = −iH(t)Ψ(t). (17)

One can apply the Floquet theorem [6–11] to express any
solution to such equations in the form

Ψ(t) =
∑
n=1,±

exp(−i$0nt)Φ̃n(t)Cn (18)

where Φ̃n(t), a Floquet state, is a periodic function, of
period T , and ~$0n (the quasienergy [7]) is an eigenvalue
of the Floquet Hamiltonian H(t)

H(t)Φ̃n(t ≡

[
H(t)− ~

d

dt

]
Φ̃n(t) = ~$0nΦ̃n(t). (19)

The constants Cn are chosen to force the function Ψ(t) to
satisfy given initial conditions.

Because the Floquet state Φ̃n(t) is periodic it can be
expanded in a Fourier series, leading to the construction

Ψ(t) =
∑
n=0,±

Cn
∑

m=−∞,+∞

exp(−i$0nt− imωM t)ϕmn.

(20)

The various Fourier components ϕmn are connected by
the need to express an adiabatic Floquet state Φ̃n(t).

Because there are three basis states, there are three
quasienergies and three independent Floquet states Φ̃n(t).
However, the eigenvalues of the Floquet Hamiltonian form
an infinite set: if ~$0n is an eigenvalue, then so is ~$0n+
~mωM , where m is any integer. The totality of eigenvalues
form a succession of triads, separated by ~ωM = 2π~/T .
Floquet eigenvalues, say $mn = $0n + mωM , bear two
labels: an integer m, running from −∞ to +∞, which
expresses the periodicity of the eigenvalues; and a three-
valued label n which identifies, for given manifold (or
zone) label m, which of three Floquet exponents (or
quasienergies) is meant. It is common to use the labels
+, 0,− for this purpose.
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4.2 Adiabatic Floquet theory

We can apply Floquet analysis to a slowly changing peri-
odic Hamiltonian in exactly the same way we apply adi-
abatic theory to a nearly constant Hamiltonian. Let us
consider a succession of contiguous intervals, each of du-
ration T0. The time T0 must be small enough (T0 � τ)
that during it the pulse amplitude can be regarded as a
constant times a trigonometric function varying at fre-
quency ωM , yet long enough that the frequency ωM is
well defined, meaning that there occur many modulation
periods within the interval T0, or T0 � T .

Under these conditions one can introduce a Floquet
expansion within each time interval tk−1 < t < tk
(tk = kT0, k = 1, 2 . . . )

Ψ(t) ≡
∑
n=0,±

C(k−1)
n Φ̃(k−1)

n (t)

× exp

[
−i$

(k−1)
0n (t− tk−1)− iT0

k−1∑
m=0

$
(m)
0n

]
.

(21)

The Floquet exponents $
(k)
0n vary from one interval to the

next, as do the adiabatic Floquet states Φ̃
(k)
n (t). The co-

efficients C
(k)
n differ from one interval to the next, and in

that sense they become time dependent. They must be
chosen so that Ψ(t) obeys desired initial conditions and is
continuous across boundaries of time segments. As with
the quasistatic RWA Hamiltonian, we start with the stat-
evector in one of the Floquet states. We require adiabatic
evolution thereafter, so that the system remains in this
state [11].

4.3 Adiabatic Floquet eigenvalues

Plots of (conventional) adiabatic eigenvalues can reveal
regions where curves cross (or avoid crossing). These are
regions where adiabatic evolution may fail. The same de-
ductions can be made when viewing plots of adiabatic
Floquet eigenvalues.

Figure 5 presents three examples of such eigenval-
ues, for Gaussian pulses with appropriately chosen delays.
From left to right, the three frames present results for in-
creasing Rabi frequency at fixed modulation frequency or,
alternatively, for decreasing modulation frequency at fixed
Rabi frequency.

Figure 5A shows an example of pulses whose peak Rabi
frequency Ωmax is chosen such that $max is less than the
modulation frequency ωM . The curves separate into an
infinite sequence of triads, each separated by ωM . The
plot shows three of these.

For successful adiabatic evolution one must remain in
the null eigenvalue state.

When $max exceeds the modulation frequency, the
sets of triads overlap. Figure 5B shows an example of such
a case. As can be seen, the null eigenvalue state has, in

Fig. 5. Adiabatic Floquet eigenvalues (quasienergies) $mn vs.
time for m = −1, 0,+1 and n = +, 0,−: (A) for weak exci-
tation, ωM = 1.5Ωmax; (B) for moderate excitation, ωM =
0.5Ωmax; (C) for strong excitation, ωM = 0.2Ωmax. Parame-
ters: Gaussian pulses τD = τ , pulse area Ωmaxτ = 100, mod-
ulation amplitude aP = aS = 0.5, phases φP = 0, φS = 0.3π,
no loss γ = 0 .

this case, two times during the pulses when it nearly coin-
cides with two other eigenvalues: there occur two avoided
crossings, each involving three states. It is to be expected
that adiabatic evolution may fail for such situations.

In this picture the curves from separate manifolds do
not cross. At the times of avoided crossings the curves are
separated by the modulation amplitude a. (This separa-
tion at the avoided crossing is analogous to the separation
of the usual adiabatic curves near an avoided crossing;
the parameter a acts here as does the diabatic interac-
tion there.) As this amplitude grows larger, the separa-
tion becomes greater, and there is less likelihood that the
system will transfer between the states associated with
the two curves. When the modulation amplitude is zero,
then the curves do cross (there is then no connection be-
tween the successive manifolds), and the system passes di-
abatically through the two crossing points. In such cases
diabatic passage occurs twice, to produce complete popu-
lation transfer.

When the peak Rabi frequency is larger still, $max >
2ωM , there may occur overlaps between several of the tri-
ads. Figure 5C shows an example of such a case. For such
large ratios of $max/ωM there will occur several pairs
of three-state avoided crossings, and several opportunities
for failed adiabatic evolution.

It should be noted that, though the evolution may not
be adiabatic, it may still happen that the final result of
the pulse sequence is successful population transfer. This
can happen when evolution diabatically passes through
successive curve crossings. This possibility is responsible
for some of the special cases of high efficiency.
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Fig. 6. Population transfer vs. ωM/Ωmax for shark-fin pulses.
See that large ωM is good, and for intermediate values there
are periodicities. Parameters: shark pulses, pulse area Ωmaxτ =
200, modulation amplitude aP = aS = 1, phases φP = φS =
−0.5π, no loss γ = 0.

4.4 Adiabatic versus diabatic evolution

There are several possibilities for achieving complete pop-
ulation transfer. One possibility is that the system remain
at all times in the transfer state (i.e. the adiabatic state
which evolves from the initial state) and that this adia-
batic state connects with the target state. This is the usual
STIRAP procedure; it requires both the maintenance of
adiabatic evolution and the connectivity of initial and final
states.

There are other possibilities which do not require that
the system statevector Ψ(t) remain at all times asso-
ciated with the same single adiabatic state. If, for ex-
ample, the quasienergy curve of the transfer state has
an avoided crossing with one (or two) other quasienergy
curves, then the system may evolve diabatically into one of
the other adiabatic states. If this state connects with the
target state, then successful transfer occurs. Alternatively,
the system may undergo a second diabatic change which
brings it back into coincidence with an adiabatic state
(perhaps the transfer state) which connects to the target
state. Pairs of diabatic crossings, for example, can produce
complete population transfer.

The need for paired diabatic transitions is quite evi-
dent in Figure 5C. We will present below an analytic es-
timate of probability transfer in such situations.

4.5 Loss

It may happen that, although the system remains adi-
abatically in the transfer state, and this state connects
to the target state, the transfer state has at some times
an appreciable component of the excited, lossy state ψ2.
When this is the case, then the loss during the pulse
sequence prevents complete population transfer. This is
what happens in Figure 4. Even though the modulation
frequency is large, so that there occur no avoided cross-

ings of quasienergy curves and the evolution is adiabatic,
the transfer state is lossy.

4.6 Pulse shape effects

Although the STIRAP process does not depend sensitively
upon pulse shape, it is possible to propose special shapes
for which very distinctive results occur. Prior to the start
of the pump pulse, the variation of the Stokes pulse is of
little interest; so long as the RWA is applicable, it is only
with the start of the pump pulse that it becomes impor-
tant to associate Ψ(t) with an adiabatic state. Similarly,
once the Stokes pulse ceases, the subsequent behavior of
the pump pulse is not important. Thus it is possible to
consider situations in which, at the initial time t = 0,
the Stokes pulse has a finite value, thereafter diminish-
ing, while at the final time t = τ when the Stokes pulse
vanishes, the pump pulse has a finite value.

One of the most interesting pulse pairs to illustrate
pulse-shape effects are the so-called shark-fin pulses (15),
in which the Stokes pulse initially starts at its maximum
value, following which it falls sinusoidally for one quar-
ter of a sine period. The pump pulse varies cosinusoidally
during this quarter period, at the end of which it reaches
its peak value. This combination of pulses is of interest
because it maintains a constant value of the rms Rabi fre-
quency.

Figure 6 shows the behavior of population transfer for
shark-fin pulses as frequency ωM varies. The plot is re-
markable for regular patterns of high and low values. This
behavior contrasts with the very irregular appearance of
such a plot for Gaussian pulses.

The explanation for this striking regularity can be
found by considering the adiabatic Floquet energies. For
shark-fin pulses these quasienergies remain constant for
all Floquet states. This means, in general, that adiabatic
evolution takes place, and transfer efficiency is high. How-
ever, when the choice of modulation frequency or peak
Rabi frequency causes two states to coincide (as happens
whenever$max, which coincides in this case with Ωmax/2,
is an integer multiple of the modulation frequency) then
there occurs a degeneracy of eigenvalues, and population
transfer is hindered. This is the explanation for the dips in
the curve, which occur when Ωmax/(2ωM) is an integer.

4.7 Adiabatic conditions

When the manifolds of quasienergy triads are well sepa-
rated, we just have the usual adiabatic evolution, in which
the system remains identified with one adiabatic Floquet
state. For the manifolds to be well separated, the splitting
within a triad must be much less than the separation ωM
between triads. The condition for this separation is

τ |$k −$n + jωM | � 1, k 6= n (22)

for all integer j.
When the peak Rabi frequency Ωmax is chosen such

that $max becomes close to the modulation frequency ωM
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Fig. 7. Population transfer vs. ωM/Ωmax for ramp pulses.
Solid line is an analytic result of theory, dashed line is nu-
merical result. Parameters: Linear ramp pulses, pulse area
Ωmaxτ = 1500, modulation amplitude aP = 0.1, aS = 0,
phases φP = −0.5π, φS = 0, no loss γ = 0.

then the manifolds begin to affect each other. When $max

is much larger than ωM then the manifolds overlap. There
will be crossings or avoided crossings of the curves rep-
resenting the adiabatic Floquet eigenvalues. As a result,
it may not be possible to maintain adiabatic evolution,
and good population transfer may not occur (except for
special cases).

4.8 Curve crossings

The key to understanding nonadiabatic effects in the
present problem is an analysis of the evolution when three
eigenvalues become degenerate. This is a three-state gen-
eralization of the Landau-Zener two-state model of adia-
batic evolution in the presence of a linearly varying energy
separation. Analytic results for the three-state Landau-
Zener model have been given by Carrol and Hioe [12,13].
Amongst their important results is an expression for the
dependence of adiabatic following upon the phase rela-
tionships between the three states. We will have two such
crossings, and we must consider three-state interference
effects as the states evolve between the two crossings.

Appendix A provides analytic expressions (Eqs. (A.16,
A.17)) for the efficiency of the population transfer in the
case when only pump pulse is modulated (aS = 0) with
small amplitude aP ≡ a � 1. For the linear ramp pulses
(16) these expressions can be significantly simplified:

P =
[
(1− 2α)2 − 4 sin(χ)α(1− α)

]2
, α ≡ exp (−2πp) ,

(23)

where

χ =

t0∫
−t0

dt

√
(Ω0/2− ωM )

2
+ a2Ω

(0)2
P Ω

(0)2
S /(16Ω2

0)

+ 2p(ln p− 1)− 2 argΓ (ip), (24)

Fig. 8. Population transfer vs. ωM/Ωmax for RWA pump pulse
and counter-rotating terms in Stokes pulse. The solid-line curve
is calculated for no loss, γ = 0, the dotted curve is calculated
for loss γτ = 10. The modulation frequency is ωM = 2ωS.
Parameters: Gaussian pulses τD = τ , pulse area Ωmaxτ = 50.

p =
1

256

a2Ωmaxτ(4ω̃2 − 1)2

ω̃
√

8ω̃2 − 1
, t0 =

√
8ω̃2 − 1τ/2,

ω̃ = ωM/Ωmax. (25)

We have found that expressions (23–25) provide an ex-
cellent description of the population transfer when pairs
of crossings occur. As an example, Figure 7 shows the
population transfer vs. ωM/Ωmax for the pulses of equa-
tion (16). The solid line is obtained using the formulas
(23–25), the dashed line is the numerical result. The pa-
rameters of the calculations are a = 0.1, Ωmaxτ = 1500.
One can see extremely good coincidence of the analytical
and numerical results.

4.9 Beyond the RWA

One example of pulse modulation occurs when one has
an optical transition for the pump and a low frequency
transition for the Stokes pulse. Then it is easy to have
the Stokes Rabi frequency larger than Stokes frequency
itself, whereupon the RWA no longer holds. The needed
inclusion of both the rotating and counterrotating terms
in the Hamiltonian is an example of the modulation we
are considering. For this case we take the pump pulse as

ΩP (t) = Ω
(0)
P (t) ≡ ΩmaxfP (t) (26)

and we incorporate explicit modulation of the Stokes pulse
by writing

ΩS(t) = Ω
(0)
S (t)[1 + exp(−iωM t)] (27)

where ωM = 2ωS is the modulation frequency. Instead of
the modulation cos(ωM t) considered previously, we have
here exp(−iωM t). Hence, we have amplitude and phase
modulation simultaneously.

Figure 8 shows the behavior produced by such mod-
ulation. As can be seen, the results are qualitatively the
same as shown in other figures. However, we draw atten-
tion to two features. The first one is the existence of a
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critical modulation frequency, above which frequency we
have complete transfer (as can be seen from curve 1). The
second feature is that when the Stokes frequency is close
to the critical one the transfer state has a large admixture
of the upper decaying state (as can be seen from curve
2), and so the population transfer will be accompanied by
some probability loss.

5 Summary and conclusion

We have examined the effect of putting periodic amplitude
modulation onto the pump and Stokes pulses which are
used in a STIRAP procedure.

We find that the STIRAP goal, of producing com-
plete population transfer, can be met when certain general
conditions are fulfilled by the peak mean Rabi frequency
Ωmax and the modulation frequency ωM . In general there
is a high transfer efficiency when the modulation frequency
exceeds the peak Rabi frequency.

The various results can be understood as an illustra-
tion of adiabatic Floquet theory, in which the statevector
Ψ(t) remains at all times in an eigenstate of the instanta-
neous Floquet Hamiltonian. This is a generalization, to a
nearly periodic Hamiltonian matrix, of the usual STIRAP
analysis involving a quasistatic Hamiltonian matrix.

An important criterion for successful population trans-
fer, namely adiabatic evolution, can be traced on a plot
of the dressed eigenvalues of a quasistatic Hamiltonian
or on the quasienergies of a Floquet Hamiltonian. In the
latter case there occurs an infinite sequence of eigen-
value triplets, each differing by some integer multiple of
the modulation frequency ωM . The interplay between the
splitting of a triplet, proportional to the peak mean Rabi
frequency Ωmax, and the separation of triplets, propor-
tional to ωM , is responsible for the success or failure of
adiabatic evolution and population transfer.
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Appendix A: Analytical result

Let us consider the simplest case when only the pump
pulse is modulated, with aS = 0, aP ≡ a, ϕP = 0 and
all detunings are equal to zero: ∆P = ∆S = 0. In this

appendix we assume that a is small, a � 1, and will de-
velop a perturbation theory for the small modulation am-
plitude a in the RWA. (If the ai are not small one must use
Floquet theory for the analysis of the population transfer
efficiency.) The Hamiltonian H(t) (3) in this case can be
written as

H(t) = H0(t) +Hint(t),

where

H0(t) =
~
2

 0 Ω
(0)
P (t) 0

Ω
(0)
P (t) 0 Ω

(0)
S (t)

0 Ω
(0)
S (t) 0

 , (A.1)

Hint(t) =
~
2

 0 aΩ
(0)
P (t) cosωM t 0

aΩ
(0)
P (t) cosωM t 0 0

0 0 0

 .
(A.2)

The amplitudes Cn(t) of the dressed states in the expan-
sion (7) satisfy the equations

i~
d

dt
Cn =

∑
m

Cm
[
〈n |Hint|m〉 − i

〈
n
∣∣ ∂
∂t

∣∣m〉]
× exp

{
−i

∫ t

dt′ [$m (t′)−$n (t′)]

}
(A.3)

where the eigenvalues $m (t) are separated by the rms
Rabi frequency of the pulse, Ω0(t),

$0 (t) = 0,

$± (t) = ±
1

2

√[
Ω

(0)
P (t)

]2
+
[
Ω

(0)
S (t)

]2
≡ ±

1

2
Ω0(t).

(A.4)

The terms on the right hand side of (A.3) proportional
to
〈
n
∣∣ ∂
∂t

∣∣m〉 describe the nonadiabatic coupling between
dressed states, and the terms proportional to 〈n |Hint|m〉
lead to the coupling between these states due to the peri-
odic perturbation. Hereafter we neglect the nonadiabatic
coupling. This means that in the absence of the modu-
lation, a = 0, the population of the state ψ3 after the
interaction with the laser pulses is equal to unity. Equa-
tion (A.3) then reads

i~
d

dt
Cn =

∑
m

Cm 〈n |Hint|m〉

× exp

{
−i

∫ t

dt′ [$m (t′)−$n (t′)]

}
. (A.5)

Let us consider only “one-photon transitions” between
dressed states. This means that during the action of the
lasers the conditions

1

2
Ωmin < ωM <

1

2
Ωmax (A.6)
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and

1

4
Ωmax < ωM (A.7)

are satisfied, where Ωmax and Ωmin are the maximum and
minimum values of the rms Rabi frequency Ω0(t). The
equation Ω0(t)/2 = ωM then has two real roots. In this
case one can seek the solution of (A.5) as

C0(t) = C̃0(t),

C±(t) = ∓C̃±(t) exp

[
∓iωMt± i

1

2

∫ t

dt′Ω0(t′)

]
. (A.8)

Substituting (A.8) into (A.5) and neglecting the terms
oscillating with frequency 2ωM (the RWA) one obtains
the equations

i
d

dt

C̃+1

C̃0

C̃−1

=
1

2

(Ω0 − 2ωM) −Ω̄ 0

−Ω̄ 0 −Ω̄

0 −Ω̄ − (Ω0−2ωM)


C̃+1

C̃0

C̃−1

 ,
(A.9)

where

Ω̄ ≡
a

2
√

2

Ω
(0)
P Ω

(0)
S

Ω0
(A.10)

is the effective coupling between dressed states due to the
modulation.

The maximum coupling between dressed states takes
place at the instants t when an effective detuning
(Ω0/2− ωM) is equal to zero. Due to conditions (A.6,
A.7) there are two roots, t = t1,2, of the equation
(Ω0 − 2ωM) = 0. These represent the two times at which
curves cross. Far from either crossing (for t far from t1,2),
one can consider the evolution of the system as adiabatic;
the main transitions take place at t = t1,2. In the vicinity
of t = t1 the equations (A.9) can be written as

i
d

dt

C̃+1

C̃0

C̃−1

=
1

2

2r1(t− t1) −Ω1 0

−Ω1 2r2(t− t1) −Ω1

0 −Ω1 2r3(t− t1)


C̃+1

C̃0

C̃−1

 ,
(A.11)

where

r1 = −r3 =

∣∣∣∣dΩ0

dt

∣∣∣∣
t=t1

, r2 = 0,

and Ω̄1 = Ω̄(t1). The equations (A.11) have exactly the
same form as equation (1) in the paper of Carroll and Hioe
[12], where analytic formulas for the transitions probabil-
ities are derived. Using their results for the initial condi-
tions C̃±1(−∞) = 0, C̃0(−∞) = 1 one can write the am-

plitudes C̃i(t), after passing the avoided crossing of three
eigenvalues $m (t), as

C̃
(1)
±1 = 2

√
sinh(πp1) exp

(
−

3

2
πp1 ∓ iϕ1 − iπ/2

)
C̃

(1)
0 = 2 exp (−2πp1)− 1. (A.12)

The amplitude exponents pi and phases ϕi appearing here
are

pi =
(
Ω̄i
)2
/

[
8

∣∣∣∣dΩ0

dt

∣∣∣∣
t=ti

]
, (A.13)

ϕi = pi(ln pi − 1)− argΓ (ipi) + iπ/4. (A.14)

In the time interval between the curve crossings t1 and t2
the solutions merely acquire additional phases; they can
be written as

C̃±1 = C̃
(1)
±1 exp

[
∓ i

t∫
t1

dt

√
(Ω0/2− ωM)

2
+ Ω̄2/2

]
C̃0 = C̃

(1)
0 . (A.15)

Finally, after the second avoided crossing at the moment
t = t2, the population of the state Φ0 and, hence, the
efficiency P of the population transfer, is

P =
{

[2 exp (−2πp1)− 1] [2 exp (−2πp2)− 1]

− 8
√

sinh(πp1) sinh(πp2) exp

[
−

3

2
π(p1+p2)

]
sin(χ)

}2

,

(A.16)

χ =
1

2

t2∫
t1

dt

√
(Ω0 − 2ωM)

2
+ 2Ω̄2

+ p1(ln p1−1)+p2(ln p2 − 1)−argΓ (ip1)−argΓ (ip2).

(A.17)
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